
Part 06 - Object Detection
Maura Pintor ()

Credits for this lecture go primarily to this series of

maura.pintor@unica.it
video tutorials

1

mailto:maura.pintor@unica.it
https://youtu.be/n9_XyCGr-MI?si=frXRFQjw73ItTw-4

Localization vs Detection vs Segmentation

Localization: Find what and where a single object exists in an image

output: a box with a label

Detection: Find what and where multiple objects exist in an image

output: multiple boxes with labels

Segmentation: Find which pixels contain a speci�c object in an image

output: pixel-wise labels

2

Object detection outputs

In classi�cation, the prediction is given by the highest score:

In localization, the prediction has the format:

 are the classes

 counts for the likelihood of the presence of an object inside the bounding box

 are the box coordinates

argmax(, . . .)𝑐1 𝑐𝑛

(, . . . , 𝑝, , , ,)𝑐1 𝑐𝑁 𝑥1 𝑦1 𝑥2 𝑦2

(, . . .)𝑐1 𝑐𝑁
𝑝
(, , ,)𝑥1 𝑦1 𝑥2 𝑦2

3

Object detection outputs

We have two options for de�ning the bounding boxes (BBs):

For now, we will focus on the �rst representation, but it's easy to change from one

to the other:

(, , ,)𝑥1 𝑦1 𝑥2 𝑦2
(, ,𝑤, ℎ)𝑥1 𝑦1

𝑤 = − ; ℎ = −𝑥2 𝑥1 𝑦2 𝑦1

= + 𝑤; = + ℎ𝑥2 𝑥1 𝑦2 𝑦1

4

Object detection outputs

5

Detecting objects

How can we train the model to learn all objectives?

1. correct labels of the objects

2. correct box coordinates

3. generalize for multiple objects in a single image

6

Detecting objects

Sliding window: de�ne a BB and check if there is an object. Then slide the

window and check again. If there is an object, we perform classi�cation.

We can implement the sliding window approach with a ConvNet

However, with this approach, we can have many BB for the same object!

There are tricks to remove redundant BBs (it's called Non max suppression)

7

YOLO: You Only Look Once

1. divide image in grid

2. each cell is responsible to predict

bounding box (centered in the cell) and

con�dence + class probability for the

cell

3. �nal detection is a �ltered version of

the combination of the outputs

𝑆 × 𝑆

8

Bounding Boxes

How do we measure how good a BB is?

Our goal: compare prediction vs ground truth (GT)

We want to maximize the area of GT covered by the prediction

but it's easier to cover the whole image, at this point we have maximum area of

GT covered with no effort

we have to penalize the area of prediction that is not part of the ground truth

9

Bounding Boxes

10

Bounding Boxes

Intersection over union (IoU): We want to encourage small regions that

correspond to the true region and penalize big regions that don't belong to the

correct region

If is big we have a big intersection of the two areas, and the IoU increases.

If GT is the same as the prediction, the union is minimal.

If IoU=1 we have the perfect match between ground truth and prediction, as

.

IoU is always and equal to only when it's perfect (in general is

considered "decent")

IoU = =
intersection

union
𝐼

𝑈

𝐼

𝑈

𝐼 = 𝑈

≤ 1 1 IoU > 0.5

11

Bounding Boxes

12

Bounding Boxes

13

Implementing IoU

Intersection from two lists of numbers

= [, , ,]𝐵1 𝑥11 𝑦11 𝑥12 𝑦12

= [, , ,]𝐵2 𝑥21 𝑦21 𝑥22 𝑦22

𝐼 = [max(,), max(,), min(,), min(,)],𝑥11 𝑥21 𝑦11 𝑦21 𝑥12 𝑥22 𝑦12 𝑦22

14

Implementing IoU

Let's implement a simple version (for a single box and prediction):

import torch

def intersection_over_union(boxes_pred, boxes_true):
 box1_x1, box1_y1, box1_x2, box1_y2 = boxes_pred
 box2_x1, box2_y1, box2_x2, box2_y2 = boxes_true

 # compute intersection
 i_x1 = torch.max(box1_x1, box2_x1)
 i_y1 = torch.max(box1_y1, box2_y1)
 i_x2 = torch.min(box1_x2, box2_x2)
 i_y2 = torch.min(box1_y2, box2_y2)

 # the clamp takes care of the case for which they don't intersect
 intersection = (i_x2 - i_x1).clamp(0) * (i_y2 - i_y1).clamp(0)

 # compute union
 box1_area = (box1_x2 - box1_x1) * (box1_y2 - box1_y1)
 box2_area = (box2_x2 - box2_x1) * (box2_y2 - box2_y1)

 union = box1_area + box2_area - intersection

 return intersection / (union + 1e-6)

15

Implementing IoU

And then let's try it:

box_1 = torch.tensor([0, 0, 1, 1])
box_2 = torch.tensor([0.5, 0.5, 1, 1])

print(intersection_over_union(box_1, box_1))
print(intersection_over_union(box_1, box_2))

16

Implementing Non Max suppression

We have to cleanup BB predictions (if we have multiple overlapping BBs for the

same object)

17

Implementing Non Max suppression

Each BB will have a probability indicating how likely it is that there is an obj in the

BB

Non Max Suppression (NMS) takes only the highest scoring box, and removes the

redundant boxes

NMS uses the IoU between each couple of BBs, if IoU is higher than a threshold it

removes a box from the prediction

We have to keep boxes if they belong to different classes (there might be different

objects close to each other)

18

Implementing Non Max suppression

So we have to implement the following steps:

For each class in :

remove all BBs with , where is the probability of object and is a

decided threshold

consider the largest probability box

remove all other boxes with

, . . . ,𝑐1 𝑐𝑁

𝑝 < 𝑇𝑝 𝑝 𝑇𝑝

𝐼𝑜𝑈 > 𝑇IoU

19

Implementing Non Max suppression
def non_max_suppression(bboxes, iou_threshold, prob_threshold):
 # bboxes = [[class, probability of BB, x1, y1, x2, y2], [], []]
 bboxes = [box for box in bboxes if box[1] > prob_threshold]
 bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
 bboxes_after_nms = []
 while bboxes:
 chosen_box = bboxes.pop(0)
 bboxes = [
 box
 for box in bboxes
 if box[0] != chosen_box[0]
 or intersection_over_union(
 torch.tensor(chosen_box[2:]),
 torch.tensor(box[2:]),
)
 < iou_threshold
]

 bboxes_after_nms.append(chosen_box)

 return bboxes_after_nms

20

Implementing Non Max suppression

Then let's build a test for our function:

The expected output should �lter out only the second (it's the same as the �rst but

with lower probability) and the last (small probability of object).

bboxes = [
 [1, 1, 0.1, 0.45, 0.5, 0.7],
 [1, 0.9, 0.1, 0.45, 0.45, 0.6], # same as the first
 [2, 0.9, 0.1, 0.45, 0.45, 0.6], # same as first but diff class
 [1, 0.7, 0.25, 0.35, 0.3, 0.1],
 [1, 0.05, 0.1, 0.1, 0.1, 0.1], # low probability
]

print(non_max_suppression(bboxes, prob_threshold=0.2, iou_threshold=0.5))

21

Implementing Non Max suppression

Let's also try it for a real image. First, let's get an image from the web:

import urllib
import PIL
import matplotlib.pyplot as plt

image_url = 'https://hips.hearstapps.com/ghk.h-cdn.co/assets/16/08/gettyimages-5

urllib.request.urlretrieve(image_url, "example.png")
img = PIL.Image.open("example.png")
plt.imshow(img)

22

Implementing Non Max suppression

Then, let's create a few bounding boxes:

import cv2
import numpy as np

def draw_bbox(img, bbox, colors):
 x1, y1, x2, y2 = bbox
 rec = cv2.rectangle(np.array(img), (x1, y1), (x2, y2), colors, 3)
 return rec

ground_truth = (200, 100, 600, 800)
preds = ((0, 0.9, 200, 200, 600, 800),
 (0, 0.6, 200, 220, 600, 800),
 (0, 0.95, 190, 200, 700, 800),
)

for bbox in preds:
 img = draw_bbox(img, bbox[2:], (0, 0, 255))

img = draw_bbox(img, ground_truth, (255, 0, 0))

plt.imshow(img)

23

Implementing Non Max suppression

Then, let's apply NMS:

Now, we need a way of understanding if the model is predicting the right BBs for

each image...

boxes = non_max_suppression(preds, iou_threshold=0.4, prob_threshold=0.7)

print("number of bboxes before nms: ", len(preds))
print("number of bboxes after nms: ", len(boxes))

image = img

for bbox in boxes:
 image = draw_bbox(image, bbox[2:], (0, 0, 255))

image = draw_bbox(image, ground_truth, (255, 0, 0))

plt.imshow(image);

24

Mean Average Precision (mAP)

Most used metric to evaluate object detection models

It's usually represented as a string:

Don't worry if you are not able to read it now. We will be able to understand it

soon.

mAP@0.5:0.05:0.95

25

Mean Average Precision (mAP)

Goal: have one BB for each GT bounding box, with the correct class label

TP = True Positive = one BB is identi�ed correctly (box and class label)

TN = True Negative = no BB is identi�ed and there is no GT object in the image

FP = False Positive = one BB is identi�ed but there is no GT object

FN = False Negative = no BB is identi�ed but there is a GT object in the image

precision =

recall =

TP
(TP+FP)

TP
(TP+FN)

26

Implementing Mean Average Precision (mAP)

It's a score averaged over multiple things, so we have to implement it with nested

for loops...

Steps:

1. get all bounding box predictions on our test set

2. sort by descending con�dence score

3. compute precision and recall (for given thresholds) as we go through all outputs

4. repeat for different IoU thresholds, average for a range of values

5. compute the area of the curve

6. repeat for each class and average

27

Implementing Mean Average Precision (mAP)

Let's move to the Colab for this one, the implementation is not complicated but

long to put in only one slide...

Notebook with the code used in these slides

28

https://colab.research.google.com/drive/1o_rPNmP5KTbEgOn6wIzCrcWm8wBAwgvg?usp=sharing

We then have all the pieces to evaluate our image detection models.

29

Implementing YOLO v1

For this implementation, we will use a repository with the code already written,

but we will inspect the most important parts.

We will not train a YOLO v1 model (it takes some time), but we can use a

pretrained version and use it for predictions.

First, let's see how the model is implemented.

30

Implementing YOLO v1

31

Implementing YOLO v1

32

Implementing YOLO v1

33

Implementing YOLO v1

34

Implementing YOLO v1

35

Implementing YOLO v1

36

Implementing YOLO v1

Parts of the loss function (all parts are a squared error with the target):

the �rst term is the box coordinates with identity (if there is a box in the cell and

if the cell is responsible == highest IoU for the target)

the second term is for the width and height of the cells. The square roots make

the very large BB be penalized less.

the third term regulates the probability of a box to contain an existing object

(the one with the highest IoU with the target)

the fourth term counts for cells without an object

the last term is for predicting the rigth classes

Let's now move to the repository and check out the implementation:

https://github.com/maurapintor/yolo_implementation

37

https://github.com/maurapintor/yolo_implementation

End of part 6
Summary:

Object detection fundamentals

Evaluating object detectors (metrics)

Training object detectors (loss function)

Implementation and usage

38

End of part 6
In the next chapter:

Running experiments - good practices and tools

Maura Pintor ()

Notebook with the code used in these slides

Repository with the code used in these slides

maura.pintor@unica.it

39

https://colab.research.google.com/drive/1o_rPNmP5KTbEgOn6wIzCrcWm8wBAwgvg?usp=sharing
https://github.com/maurapintor/yolo_implementation
mailto:maura.pintor@unica.it

